(1)易知a=2,b=1,c=
∴F1(-,0),F2(,0)
∴离心率e=,椭圆的准线方程为x=±
(2)解法一:设P(x,y),则
•=(--x,-y)•(-x,-y)=x2+y2-3
=x2+1--3
=
因为x∈[-2,2]
故当x=0,即点P为椭圆短轴端点时,•有最小值-2;
当x=±2,即点P为椭圆长轴端点时,,•有最大值1.
解法二:
(2)易知a=2,b=1,c=
∴F1(-,0),F2(,0)
设P(x,y),则,•=||•||•cos∠F1PF2
=||||•
=[(x+)2+y2+(x-)2+y2-12]
=x2+y2-3
(以下同解法一).
(3)显然直线x=0不满足题设条件.
可设直l:y=kx-2,A(x1,y1),B(x2,y2)
联立,消去y,整理得:(k2+)x2 +4kx+3=0
∴x1+x2=-,x1x2=
由△=(4k)2-4(k 2+ )×3=4k2-3>0得:k<或k>①
又∵0°<∠AOB<90°
∴cos∠AOB>0
∴•=x1x2+y1y2>0
又∵y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4
=+=
∵+>0,即k2<4,
∴-2<k<2②
故由①②得-2<k<-,或<k<2.