问题
选择题
已知奇函数f(x)满足f(x+3)=f(x),当x∈[1,2]时,f(x)=3x-1则f[log
|
答案
log
(33•4)=-log3(33•4)=-(3+log34)1 3
∵奇函数f(x)满足f(x+3)=f(x),且当x∈[1,2]时,f(x)=3x-1
∴f[log
(33•4)]=f[-log34]=-f(log34)=-(3log34-1)=-3,1 3
故选B.
已知奇函数f(x)满足f(x+3)=f(x),当x∈[1,2]时,f(x)=3x-1则f[log
|
log
(33•4)=-log3(33•4)=-(3+log34)1 3
∵奇函数f(x)满足f(x+3)=f(x),且当x∈[1,2]时,f(x)=3x-1
∴f[log
(33•4)]=f[-log34]=-f(log34)=-(3log34-1)=-3,1 3
故选B.