问题
解答题
已知各项为正数的数列{an}的前n项和为{Sn},首项为a1,且2,an,Sn成等差数列, (Ⅰ)求数列{an}的通项公式; (Ⅱ)若bn=log2an,cn=
|
答案
(I)由题意可得,2an=2+Sn①
∴2an-1=2+Sn-1(n≥2)②
①-②可得,an=2an-1(n≥2)
∵2a1=2+S1∴a1=2
由等比数列的通项公式可得,an=2n
(II)∵bn=log2an=n,Cn=
=bn an n 2n
∴Tn=
+1 2
+2 22
+…+3 23
①n 2n
∴
Tn=1 2
+1 22
+…+2 23
+n-1 2n
②n 2n+1
①-②可得,
Tn=1 2
+1 2
+…+1 22
-1 2n
=n 2n+1
-
[1-(1 2
)n]1 2 1- 1 2 n 2n+1
∴Tn=2-2+n 2n