在数列{an}中,a1=1,an+1=
(1)求证:数列{
(2)求c的值 (3)设bn=an•an+1,数列{bn}的前n项和为Sn,证明:Sn<
|
(1)证明:∵an+1=an c•an+1
∴
=1 an+1
=c•an+1 an
+c1 an
∴数列{
}是等差数列;1 an
(2)由(1)知数列{
}是以1为首项,c为公差的等差数列,1 an
∴
=1+(n-1)c=cn+1-c,1 an
∴an=1 cn+1-c
∴a2=
,a5=1 c+1
,1 4c+1
因为a1,a2,a5成等比数列,
所以(
)2=1 c+1
×1,1 4c+1
解得c=0或c=2.
当c=0时,a1=a2=a5,不符合题意舍去,
故c=2;
(3)证明:由(2)知an=
,bn=an•an+1=1 2n-1
•1 2n-1
=1 2n+1
(1 2
-1 2n-1
)1 2n+1
∴Sn=
(1-1 2
+1 3
-1 3
+…+ 1 5
-1 2n-1
)=1 2n+1
(1-1 2
)<1 2n+1 1 2
故Sn<
.1 2