问题
解答题
f(x)对任意x∈R都有f(x)+f(1-x)=
(Ⅰ)求f(
(Ⅱ)数列{an}满足:an=f(0)+f(
(Ⅲ)令bn=
|
答案
(Ⅰ)因为f(
) +f(1-1 2
) =1 2
,所以f(1 2
) =1 2 1 4
令x=
,得f(1 n
) +f(1-1 n
) =1 n
,即f(1 2
) +f(1 n
)=n-1 n 1 2
(Ⅱ)an=f(0)+f(
)+f(1 n
)+…+f(2 n
)+f(1)n-1 n
又an=f(1)+f(
)+…f(n-1 n
)+f(0)1 n
两式相加 2an=[f(0)+f(1)]+[f(
+1 n
)]+[f(1)+f(0)]=n-1 n n+1 2
所以an=
,n∈Nn+1 4
又an+1-an=
-n+1+1 4
=n+1 4
.故数列{an}是等差数列.1 4
(Ⅲ)bn=
=4 4an-1
Tn=b12+b22++bn2=16(1+4 n
+1 22
+…1 32
)≤16[1+1 n2
+1 1×2
+…1 2×3
]1 n(n-1)
=16[1+(1-
)+(1 2
-1 2
)+…(1 3
-1 n-1
)]1 n
=16(2-
)=32-1 n
=Sn.所以Tn≤Sn16 n