问题 解答题

已知数列{an},其前n项和为Sn,对任意n∈N*都有:Sn=man+1-m(m∈R,m≠0且m≠1).

(1)求证:{an}是等比数列;

(2)若S3,S7,S5,构成等差数列,求实数m的值;

(3)求证:对任意大于1的实数m,S1+S2+S3+…+Sn,S3n+1+S3n+2+S3n+3+…+S4n,S7n+1+S7n+2+S7n+3+…+S8n不能构成等差数列.

答案

(1)当n=1时,a1=S1=ma1+1-m,

又m≠0,且m≠1,故a1=1.

当n≥2时,Sn-1=man-1+1-m,

故an=man-man-1,即(m-1)an=man-1

也即

an
an-1
=
m
m-1
≠0,

所以,{an}是以1为首项,

m
m-1
为公比的等比数列;

(2)由S3,S7,S5构成等差数列,知:2S7=S3+S5

即2(ma7+1-m)=(ma3+1-m)+(ma5+1-m),又m≠0,化简得:2a7=a3+a5

令q=

m
m-1
,则2q4-q2-1=0,得q2=1或q2=-
1
2
(舍),

即q=1(舍),q=-1,

m
m-1
=-1,解得,m=
1
2

(3)假设S1+S2+S3+…+Sn,S3n+1+S3n+2+S3n+3+…+S4n

S7n+1+S7n+2+S7n+3+…+S8n构成等差数列,

则2(S3n+1+S3n+2+S3n+3+…+S4n)=(S1+S2+S3+…+Sn)+(S7n+1+S7n+2+S7n+3+…+S8n

即2(ma3n+1+m-1+ma3n-2+m-1+…+ma4n+m-1)

=(ma1+m-1+ma2+m-1+…+man+m-1)+(ma7n+1+m-1+ma7n+2+m-1+…+ma8n+m-1),

化简得2m(S4n-S3n)=mSn+m(S8n-S7n),

又知(S4n-S3n)=q3nSn(S8n-S7n)=q7nSn

可得2q3nSn=q7nSn+Sn,(*)

而m>1,所以q>1,Sn>0,

且1+q7n>2

q7n
2
q6n
=2q3n,故(*)无解

所以假设错误,

故对任意大于1的实数m,

S1+S2+S3+…+Sn,S3n+1+S3n+2+S3n+3+…+S4n,S7n+1+S7n+2+S7n+3+…+S8n不能构成等差数列.

单项选择题
单项选择题