问题 选择题

已知三角形的三边a,b,c,满足a2+b2+c2=ab+bc+ca,那么这个三角形的形状(  )

A.直角三角形

B.等腰三角形

C.等边三角形

D.有一个角为30°的直角三角形

答案

∵a2+b2+c2=ab+bc+ca

两边乘以2得:2a2+2b2+2c2-2ab-2bc-2ac=0

即(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)=0

∴(a-b)2+(b-c)2+(c-a)2=0

∵偶次方总是大于或等于0,

∴a-b=0,b-c=0,c-a=0

∴a=b,b=c,c=a.

所以这是一个等边三角形

故选C.

单项选择题
单项选择题