已知函数y=f(x)的图象关于y轴对称,且满足f(x-2)=ax2-(a-3)x+(a-2).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)g(x)=f[f(x)],F(x)=pg(x)+f(x),问是否存在p(p<0)使F(x)在区间(-∞,-3]上是减函数,且在区间(-3,0)内是增函数?试证明你的结论.
(Ⅰ)令x-2=t,则x=t+2.
由于f(x-2)=ax2-(a-3)x+(a-2),
所以f(t)=a(t+2)2-(a-3)(t+2)+(a-2)
=at2+3(a+1)t+(3a+4)
∴f(x)=ax2+3(a+1)x+(3a+4)
∵y=f(x)的图象关于y轴对称
∴a≠0且3(a+1)=0,即a=-1
故f(x)=-x2+1
(Ⅱ)g(x)=f[f(x)]=-(-x2+1)2+1
=-x4+2x2F(x)=pg(x)+f(x)=-px4+(2p-1)x2+1
设存在p(p<0),使F(x)满足题目要求,
则当-∞<x1<x2≤-3时,
F(x)是减函数,即F(x1)-F(x2)
=(x12-x22)[2p-1-p(x12+x22)]>0
由假设-x1>-x2≥3>0,∴x12>x22>9
∴2p-1-p(x12+x22)>0 ①
又p<0,x12+x22>18∴-p(x12+x22)>-18p
∴2p-1-p(x12+x22)>2p-1-18p=-16p-1
要使①式恒成立,只须-16p-1≥0即p≤-1 16
又当-3<x1<x2<0时,F(x)是增函数,
即F(x1)-F(x2)<0,也就是2p-1-p(x12+x22)<0 ②
此时0<-x2<-x1<3.x12+x22<18-p(x12+x22)<-18p,
2p-1-p(x12+x22)<-16p-1
要使②式恒成立,只须-16p-1≤0即p≥-1 16
故存在p=-
满足题目要求.1 16
另依题意F(-3)是F(x)的极小值,∴F′(-3)=0.
∵F'(x)=-4px3+2(2p-1)x,∴-4p(-3)3+2(2p-1)(-3)=0,
即p=-
.当p=-1 16
时,1 16
F(x)=
x4-1 16
x2+1,F′(x)=9 8
x3-1 4
x=9 4
x(x2-9)1 4
∴当x<-3时,F'(x)<0,F(x)在(-∞,-3]上是减函数;
当x∈(-3,0)时,F(x)是增函数.
故存在p=-
满足题目要求.1 16