问题
填空题
设奇函数f(x)满足:对∀x∈R有f(x+1)+f(x)=0,则f(5)=______.
答案
∵f(x)是奇函数,
∴f(-x)=-f(x),f(0)=0,
又∵f(x+1)+f(x)=0,
∴f(x+1)=-f(x),f(1)=0,
∴f(x+2)=f(x),即函数f(x)是周期为2的周期函数,
f(5)=f(3)=f(1)=0,
故答案为 0.
设奇函数f(x)满足:对∀x∈R有f(x+1)+f(x)=0,则f(5)=______.
∵f(x)是奇函数,
∴f(-x)=-f(x),f(0)=0,
又∵f(x+1)+f(x)=0,
∴f(x+1)=-f(x),f(1)=0,
∴f(x+2)=f(x),即函数f(x)是周期为2的周期函数,
f(5)=f(3)=f(1)=0,
故答案为 0.