问题 解答题
已知函数f(x)=
2x
x+1

(1)当x≥1时,证明:不等式f(x)≤x+lnx恒成立.
(2)若数列{an}满足a1=
2
3
,an+1=f(an),bn=
1
an
-1
,n∈N+,证明数列{bn}是等比数列,并求出数列{bn}、{an}的通项公式;
(3)在(2)的条件下,若cn=an•an+1•bn+1(n∈N+),证明:c1+c2+c3+…cn
1
3
答案

(1)∵x≥1得f(x)-x=

2x
x+1
-x=
2x-x2-x
x+1
=
-x(x-1)
x+1
≤0,

而x≥1时,lnx≥0

∵x≥1时,f(x)-x≤lnx

∴当x≥1时,f(x)≤x+lnx恒成立

(2)a1=

2
3
,an+1=f(an),bn=
1
an
-1,n∈N+∴an+1=
2an
an+1
1
an+1
=
1
2
+
1
2an

∴a1=

2
3
,an+1=f(an),bn=
1
an
-1,n∈N+

bn+1
bn
=
1
an+1
-1
1
an
-1
=
1
2
+
1
2an
-1
1
an
-1
=
1
2an
-
1
2
1
an
-1
=
1
2
(n∈N+

又b1=

1
a1
-1=
1
2
∴{bn}是首项为
1
2
,公比为
1
2
的等比数列,其通项公式为bn=
1
2n

又a1=

2
3
,an+1=f(an),bn=
1
an
-1,n∈N+

∴an=

1
bn+1
=
1
1
2n
+1
=
2n
2n+1
(n∈N+

(3)cn=an•an+1•bn+1=

2n
2n+1
×
2n+1
2n+1+1
×
1
2n+1
=
2n
2n+1
×
1
2n+1+1
=
1
2n+1
-
1
2n+1+1

∴c1+c2+c3+…+cn=(

1
21+1
-
1
22+1
)+(
1
22+1
-
1
23+1
)+…+(
1
2n+1
-
1
2n+1+1
)=
1
3
-
1
2n+1+1
1
3

单项选择题
单项选择题