问题
填空题
(A题) (奥赛班做)已知椭圆E的离心率为e,左右焦点分别为F1、F2,抛物线C以F1顶点,F2为焦点,P为两曲线的一个交点,
|
答案
设P到椭圆左准线的距离为d,则|PF1|=ed,
又因为|PF1|=e|PF2|,所以|PF2|=d,
即椭圆和抛物线的准线重合,而抛物线C2以F1为顶点,以F2为焦点
所以椭圆的焦准距等于抛物线焦准距的一半,也等于椭圆的焦距,即
-c=2c,a2 c
解得a2=3c2,所以椭圆的离心率e=
.3 3
故答案为:
.3 3