问题 解答题
已知函数f(x)=
x
3x+1
,数列{an}满足a1=1,an+1=f(an)(n∈N*

(1)求证:数列{
1
an
}
是等差数列;
(2)记Sn(x)=
x
a1
+
x2
a2
+…+
xn
an
,求Sn
(x).
答案

(1)由已知得:an+1=

an
3an+1
1
an+1
=
3an+1
an
=3+
1
an

1
an+1
-
1
an
=3

{

1
an
}是首项为1,公差d=3的等差数列

(2)由(1)得

1
an
=1+(n-1)3=3n-2

∴Sn(x)=x+4x2+7x3+…+(3n-5)xn-1+(3n-2)xn

当x=1,Sn(1)=1+4+7+…+(3n-2)=

1+3n-2
2
•n=
n(3n-1)
2

当x≠1,0时,Sn(x)=x+4x2+7x3+…+(3n-5)xn-1+(3n-2)xn

xSn(x)=x2+4x3+7x4+…+(3n-5)xn+(3n-2)xn+1

(1-x)Sn(x)=x+(3x2+3x3+…+3xn)-(3n-2)xn+1

=x+

3x2(1-xn-1)
1-x
-(3n-2)xn+1

Sn(x)=

x-(3n-2)xn+1
1-x
+
3x2(1-xn-1)
(1-x)2
=
x(1-x)-(3n-2)xn+1(1-x)+3x2(1-xn-1)
(1-x)2

=

(3n-2)xn+2-(3n-2)xn+1+x-x2+3x2-3xn+1
(1-x)2

=

(3n-2)xn+2-(3n+1)xn+1+2x2+x
(1-x)2

当x=0时,Sn(0)=0也适合.

综上所述,x=1,Sn(1)=

n(3n-1)
2

x≠1,Sn(x)=

(3n-2)xn+2-(3n+1)xn+1+2x2+x
(1-x)2

多项选择题
判断题