问题
解答题
已知函数f(x)=
(1)求证:数列{
(2)记Sn(x)=
|
答案
(1)由已知得:an+1=
,an 3an+1
=1 an+1
=3+3an+1 an 1 an
∴
-1 an+1
=31 an
∴{
}是首项为1,公差d=3的等差数列1 an
(2)由(1)得
=1+(n-1)3=3n-21 an
∴Sn(x)=x+4x2+7x3+…+(3n-5)xn-1+(3n-2)xn
当x=1,Sn(1)=1+4+7+…+(3n-2)=
•n=1+3n-2 2 n(3n-1) 2
当x≠1,0时,Sn(x)=x+4x2+7x3+…+(3n-5)xn-1+(3n-2)xn
xSn(x)=x2+4x3+7x4+…+(3n-5)xn+(3n-2)xn+1
(1-x)Sn(x)=x+(3x2+3x3+…+3xn)-(3n-2)xn+1
=x+
-(3n-2)xn+13x2(1-xn-1) 1-x
∴Sn(x)=
+x-(3n-2)xn+1 1-x
=3x2(1-xn-1) (1-x)2 x(1-x)-(3n-2)xn+1(1-x)+3x2(1-xn-1) (1-x)2
=(3n-2)xn+2-(3n-2)xn+1+x-x2+3x2-3xn+1 (1-x)2
=(3n-2)xn+2-(3n+1)xn+1+2x2+x (1-x)2
当x=0时,Sn(0)=0也适合.
综上所述,x=1,Sn(1)=n(3n-1) 2
x≠1,Sn(x)=
.(3n-2)xn+2-(3n+1)xn+1+2x2+x (1-x)2