问题 解答题
已知数列{an}:1,1+
1
2
1+
1
3
+
2
3
1+
1
4
+
2
4
+
3
4
,…,1+
1
n
+
2
n
+…+
n-1
n
,….
(I)求数列{an}的通项公式an,并证明数列{an}是等差数列;
(II)设bn=
n
(an+1-an)n
,求数列{bn}的前n项和Tn
答案

(I)∵an=1+

1
n
+
2
n
+…+
n-1
n
=1+
(
1
n
+
n-1
n
)(n-1)
2
=
n+1
2

∴an+1-an=

(n+1)+1
2
-
n+1
2
=
1
2
,又a1=1,

∴数列{an}是以1为首项,

1
2
为公差的等差数列;

(II)∵bn=

n
(an+1-an)n
=
n
(
1
2
)
n
=n•2n

∴Tn=b1+b2+…+bn=1×21+2×22+…+n•2n,①

∴2Tn=1×22+2×23+…+(n-1)×2n+n•2n+1,②

①-②得:-Tn=21+22+…+2n-n•2n+1

=

2(1-2n)
1-2
-n•2n+1

=(1-n)•2n+1-2,

∴Tn=(n-1)•2n+1+2.

填空题
单项选择题