问题
解答题
已知数列{an}:1,1+
(I)求数列{an}的通项公式an,并证明数列{an}是等差数列; (II)设bn=
|
答案
(I)∵an=1+
+1 n
+…+2 n
=1+n-1 n
=(
+1 n
)(n-1)n-1 n 2
,n+1 2
∴an+1-an=
-(n+1)+1 2
=n+1 2
,又a1=1,1 2
∴数列{an}是以1为首项,
为公差的等差数列;1 2
(II)∵bn=
=n (an+1-an)n
=n•2n,n (
)n1 2
∴Tn=b1+b2+…+bn=1×21+2×22+…+n•2n,①
∴2Tn=1×22+2×23+…+(n-1)×2n+n•2n+1,②
①-②得:-Tn=21+22+…+2n-n•2n+1
=
-n•2n+12(1-2n) 1-2
=(1-n)•2n+1-2,
∴Tn=(n-1)•2n+1+2.