已知数列{an}中,a1=
(Ⅰ)计算a2,a3,a4的值; (Ⅱ)令bn=an+1-an-1,求证:数列{bn}是等比数列; (Ⅲ)求数列{an}的通项公式. |
(Ⅰ)由题意,2an+1-an=n,又a1=
,所以2a2-a1=1,解得a2=1 2
.(2分)3 4
同理a3=
,a4=11 8
,(3分)35 16
(Ⅱ)因为2an+1-an=n,
所以bn+1=an+2-an+1-1=
-an+1-1=an+1+n+1 2
,(5分)bn=an+1-an-1=an+1-(2an+1-n)-1=n-an+1-1=2bn+1,即n-an+1-1 2
=bn+1 bn
(7分)1 2
又b1=a2-a1-1=-
,所以数列{bn}是以-3 4
为首项,3 4
为公比的等比数列.(9分)1 2
(Ⅲ)由(Ⅱ)知bn=-
•(3 4
)n-1(10分)1 2
∴an+1-an-1=-
•(3 4
)n-1∴an+1-an=-1 2
•(3 4
)n-1+1(11分)1 2
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)(12分)
=
-1 2
[(3 4
)0+(1 2
)1+(1 2
)2++(1 2
)n-2]+n-11 2
=n-2+
(14分)3 2n