问题
解答题
数列{an}满足:an=3an-1+3n-1(n∈N,n≥2),其中a4=365, (1)求a1,a2,a3; (2)若{
|
答案
(1)a1=5,a2=23,a3=95
(2)由{
}为等差数列可得:an+λ 3n
-an+λ 3n
为常数,an-1+λ 3n-1
即
为常数,3n-(2λ+1) 3n
所以2λ+1=0,
故λ=-1 2
(3)由2)可得an=(n+
)3n+11 2
Sn′=
×3+3 2
×32+…+ (n+5 2
)3n1 2
3Sn′=
×32+3 2
×33+…(n-5 2
)×3n+(n+1 2
)×3n+11 2
∴-2Sn′=
+32+33+…+3n-(n+9 2
)×3n+11 2
所以Sn=
(3n+1+1)n 2