问题 解答题
设数列{an} 的前n项和为Sn,满足2Sn=an+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.
(1)求a1,a2,a3的值;
(2)求证:数列{an+2n}是等比数列
(3)证明:对一切正整数n,有
1
a1
+
1
a2
+…+
1
an
3
2
答案

(1)因为a1,a2+5,a3成等差数列,所以a1+a3=2(a2+5),①,

当n=1时,2a1=a2-3,②

当n=2时,2(a1+a2)=a3-7,③

所以联立①②③解得,a1=1,a2=5,a3=19.

(2)由2sn=an+1-2n+1+1,①得2sn-1=an-2n+1(n≥2),②,

两式相减得2an=an+1-an_2n(n≥2),所以

an+1+2n+1
an+2n
=
3an+2n+2n+1
an+2n
=3(n≥2).

因为

a2+22
a1+2
=3,所以{an+2n}是首项为3,公比为3的等比数列.所以an+1+2n+1=3(an+2n),又a1=1,a1+21=3,

所以an+2n=3n,即an=3n-2n

(3)因为an+1=3n+1-2n+1>2×3n-2n+1=2an,所以

1
an+1
1
2
1
an

所以当n≥2时,

1
a3
1
2
1
a2
1
a4
1
2
1
a3
1
an
1
2
1
an-1
,两边同时相乘得
1
an
(
1
2
)
n-2
1
a2

所以

1
a1
+
1
a2
+…+
1
an
≤1+
1
5
+
1
2
×
1
5
+…+(
1
2
)
n-2
×
1
5
7
5
3
2

填空题
单项选择题 案例分析题