设数列{an} 的前n项和为Sn,满足2Sn=an+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差数列. (1)求a1,a2,a3的值; (2)求证:数列{an+2n}是等比数列 (3)证明:对一切正整数n,有
|
(1)因为a1,a2+5,a3成等差数列,所以a1+a3=2(a2+5),①,
当n=1时,2a1=a2-3,②
当n=2时,2(a1+a2)=a3-7,③
所以联立①②③解得,a1=1,a2=5,a3=19.
(2)由2sn=an+1-2n+1+1,①得2sn-1=an-2n+1(n≥2),②,
两式相减得2an=an+1-an_2n(n≥2),所以
=an+1+2n+1 an+2n
=3(n≥2).3an+2n+2n+1 an+2n
因为
=3,所以{an+2n}是首项为3,公比为3的等比数列.所以an+1+2n+1=3(an+2n),又a1=1,a1+21=3,a2+22 a1+2
所以an+2n=3n,即an=3n-2n.
(3)因为an+1=3n+1-2n+1>2×3n-2n+1=2an,所以
<1 an+1
⋅1 2
,1 an
所以当n≥2时,
<1 a3
⋅1 2
,1 a2
<1 a4
⋅1 2
…1 a3
<1 an
⋅1 2
,两边同时相乘得1 an-1
<(1 an
)n-2⋅1 2
,1 a2
所以
+1 a1
+…+1 a2
≤1+1 an
+1 5
×1 2
+…+(1 5
)n-2×1 2
<1 5
<7 5
.3 2