问题 解答题
在数列{an}中,a1=2,an+1=an+2n+1(n∈N*
(1)求证:数列{an-2n}为等差数列;
(2)设数列{bn}满足bn=log2(an+1-n),若(1+
1
b2
)(1+
1
b3
)(1+
1
b4
)
(1+
1
bn
)>k
n+1
对一切n∈N*且n≥2恒成立,求实数k的取值范围.
答案

(1)(an+1-2n+1)-(an-2n)=an+1-an-2n=1

故数列{an-2n}为等差数列,且公差d=1.

an-2n=(a1-2)+(n-1)d=n-1,an=2n+n-1;

(2)由(1)可知an=2n+n-1,∴bn=log2(an+1-n)=n

设f(n)=(1+

1
b2
)(1+
1
b3
)(1+
1
b4
)…(1+
1
bn
)×
1
n+1
,(n≥2)

则f(n+1)=(1+

1
b2
)(1+
1
b3
)(1+
1
b4
)…(1+
1
bn
)×(1+
1
bn+1
)×
1
n+2

两式相除可得

f(n+1)
f(n)
=(1+
1
bn+1
)×
n+1
n+2
=
n+2
n+1
>1,

则有f(n)>f(n-1)>f(n-2)>…>f(2)=

3
2

要使(1+

1
b2
)(1+
1
b3
)(1+
1
b4
)…(1+
1
bn
)>k
n+1
对一切n∈N*且n≥2恒成立,

必有k<

3
2

故k的取值范围是k<

3
2

填空题
单项选择题