问题
解答题
在数列{an}中,a1=2,an+1=an+2n+1(n∈N*) (1)求证:数列{an-2n}为等差数列; (2)设数列{bn}满足bn=log2(an+1-n),若(1+
|
答案
(1)(an+1-2n+1)-(an-2n)=an+1-an-2n=1
故数列{an-2n}为等差数列,且公差d=1.
an-2n=(a1-2)+(n-1)d=n-1,an=2n+n-1;
(2)由(1)可知an=2n+n-1,∴bn=log2(an+1-n)=n
设f(n)=(1+
)(1+1 b2
)(1+1 b3
)…(1+1 b4
)×1 bn
,(n≥2)1 n+1
则f(n+1)=(1+
)(1+1 b2
)(1+1 b3
)…(1+1 b4
)×(1+1 bn
)×1 bn+1
,1 n+2
两式相除可得
=(1+f(n+1) f(n)
)×1 bn+1
=n+1 n+2
>1,n+2 n+1
则有f(n)>f(n-1)>f(n-2)>…>f(2)=
,3 2
要使(1+
)(1+1 b2
)(1+1 b3
)…(1+1 b4
)>k1 bn
对一切n∈N*且n≥2恒成立,n+1
必有k<
;3 2
故k的取值范围是k<
.3 2