问题
解答题
若数列{an}满足前n项之和Sn=2an-4(n∈N*),bn+1=an+2bn,且b1=2. (1)求证数列{
|
答案
(1)当n=1时,a1=S1=2a1-4
∴a1=4
当n≥2时,an=Sn-Sn-1=2an-4-2an-1+4
即an=2an-1
∴
=2an an-1
∴an=2n+1
bn+1=2n+1+2bn
∴
-bn+1 2n+1
=1bn 2n
又
=1b1 21
∴
=1+(n-1)•1=nbn 2n
∴bn=n•2n(n∈N*)
(2)Tn=1×2+2×22+…+n•2n
2Tn=1×22+…+(n-1)•2n+n•2n+1
两式相减得 Tn=-2-22-…-2n+n•2n+1
=-
+n•2n+1=(n-1)•2n+1+2(n∈N*).2(1-2n) 1-2