问题
选择题
已知奇函数f(x)=
|
答案
因为函数f(x)是奇函数,
所以设x<0,则-x>0,
所以f(-x)=ax2-bx+c=-(x2-2x+2)=-x2+2x-2,
所以a=-1,-b=2,c=-2,即a=-1,b=-2,c=-2.
所以a+b+c=-5.
故选A.
已知奇函数f(x)=
|
因为函数f(x)是奇函数,
所以设x<0,则-x>0,
所以f(-x)=ax2-bx+c=-(x2-2x+2)=-x2+2x-2,
所以a=-1,-b=2,c=-2,即a=-1,b=-2,c=-2.
所以a+b+c=-5.
故选A.