问题 选择题
若中心在原点,焦点坐标为(0,±5
2
)的椭圆被直线3x-y-2=0截得的弦的中点的横坐标为
1
2
,则椭圆方程为(  )
A.
2x2
25
+
2y2
75
=1
B.
2x2
75
+
2y2
25
=1
C.
x2
25
+
y2
75
=1
D.
x2
75
+
y2
25
=1
答案

设椭圆:

y2
a2
+
x2
b2
=1(a>b>0),则a2-b2=50①

又设A(x1,y1),B(x2,y2),弦AB中点(x0,y0

∵x0=

1
2
,∴代入直线方程得y0=
3
2
-2=-
1
2

y12
a2
+
x12
b2
=1
y22
a2
x22
b2
=1
,可得
y12-y22
a2
=-
x12-x22
b2

∴AB的斜率k=

y1-y2
x1-x2
=-
a2
b2
x1+x2
y1+y2
=-
a2
b2
x0
y0
=3

x0
y0
=-1,∴a2=3b2

联解①②,可得a2=75,b2=25,得椭圆的方程为:

x2
25
+
y2
75
=1

故选:C

单项选择题
判断题