问题
选择题
若中心在原点,焦点坐标为(0,±5
|
答案
设椭圆:
+y2 a2
=1(a>b>0),则a2-b2=50①x2 b2
又设A(x1,y1),B(x2,y2),弦AB中点(x0,y0)
∵x0=
,∴代入直线方程得y0=1 2
-2=-3 2 1 2
由
,可得
+y12 a2
=1x12 b2 y22 a2
=1x22 b2
=-y12-y22 a2 x12-x22 b2
∴AB的斜率k=
=-y1-y2 x1-x2
•a2 b2
=-x1+x2 y1+y2
•a2 b2
=3x0 y0
∵
=-1,∴a2=3b2②x0 y0
联解①②,可得a2=75,b2=25,得椭圆的方程为:
+x2 25
=1y2 75
故选:C