问题
解答题
已知f(x)=log2x,若2,f(a1),f(a2),f(a3),…,f(an),2n+4,…(n∈N*)成等差数列. (1)求数列{an}(n∈N*)的通项公式; (2)设g(k)是不等式log2x+log2(3
(3)在(2)的条件下,试求一个数列{bn},使得
|
答案
(1)2n+4=2+(n+1)d,
∴d=2 f(an)=2+(n+1-1)•2=2(n+1)
即log2an=2n+2,
∴an=22n+2
(2)log2(-x2+3
x)≥2k+3,22(k+1)
∴-x2+3
x≥22k+3,22(k+1)
得,x2-3•2k+1x+22(k+1)+1≤0,即x2-3•2k+1x+2•(2k+1)2≤0,
∴(x-2k+1)(x-2•2k+1)≤0,
∴2k+1≤x≤2•2k+1
则g(k)=2k+1+1
(3)
=1 g(n)g(n+1)
=1 (2n+1+1)(2n+2+1)
(1 2n+1
-1 2n+1+1
),1 2n+2+1
取bn=2n+1,
则
bn=1 g(n)g(n+1)
bn=1 (2n+1+1)(2n+2+1)
-1 2n+1+1 1 2n+2+1
[lim n→∞
b1+1 g(1)g(2)
b2+…1 g(2)g(3)
bn]=1 g(n)g(n+1)
(lim n→∞
-1 5
)=1 2n+2+1
.1 5
∴bn=2n+1