问题 解答题
已知f(x)=log2x,若2,f(a1),f(a2),f(a3),…,f(an),2n+4,…(n∈N*)成等差数列.
(1)求数列{an}(n∈N*)的通项公式;
(2)设g(k)是不等式log2x+log2(3
ak
-x)≥2k+3(k∈N*)
整数解的个数,求g(k);
(3)在(2)的条件下,试求一个数列{bn},使得
lim
n→∞
[
1
g(1)g(2)
b1+
1
g(2)g(3)
b2+…
1
g(n)g(n+1)
bn]=
1
5
答案

(1)2n+4=2+(n+1)d,

∴d=2    f(an)=2+(n+1-1)•2=2(n+1)

即log2an=2n+2,

∴an=22n+2

(2)log2(-x2+3

22(k+1)
x)≥2k+3,

-x2+3

22(k+1)
x≥22k+3

得,x2-3•2k+1x+22(k+1)+1≤0,即x2-3•2k+1x+2•(2k+12≤0,

∴(x-2k+1)(x-2•2k+1)≤0,

∴2k+1≤x≤2•2k+1

则g(k)=2k+1+1

(3)

1
g(n)g(n+1)
=
1
(2n+1+1)(2n+2+1)
=
1
2n+1
(
1
2n+1+1
-
1
2n+2+1
),

取bn=2n+1

1
g(n)g(n+1)
bn=
1
(2n+1+1)(2n+2+1)
bn=
1
2n+1+1
-
1
2n+2+1

lim
n→∞
[
1
g(1)g(2)
b1+
1
g(2)g(3)
b2+…
1
g(n)g(n+1)
bn]=
lim
n→∞
(
1
5
-
1
2n+2+1
)=
1
5

∴bn=2n+1

单项选择题
单项选择题