问题
解答题
(理) 设数列{an}为正项数列,其前n项和为Sn,且有an,sn,
|
答案
(1)∵an,sn,
成等差数列a 2n
∴2Sn=an+
,a 2n
∴n≥2时,2Sn-1=an-1+
,a 2n-1
两式相减得:2an=an2+an-
-an-1,a 2n-1
∴(an+an-1)(an-an-1-1)=0
∵数列{an}为正项数列,∴an-an-1=1
即{an}是公差为1的等差数列
又2a1=a12+a1,∴a1=1
∴an=1+(n-1)×1=n;
(2)由(1)知,Sn=
,n(n+1) 2
∴f(n)=
=Sn (n+50)Sn+1
=n n2+52n+100
≤1 n+
+52100 n 1 72
当且仅当n=10时,f(n)有最大值
.1 72