在等比数列{an}(n∈N*)中,a1>1,公比q>0.设bn=log2an,且b1+b3+b5=6,b1b3b5=0.
(1)求证:数列{bn}是等差数列;
(2)求{bn}的前n项和Sn及{an}的通项an;
(3)试比较an与Sn的大小.
(1)证明:∵bn=log2an,
∴bn+1-bn=log2
=log2q为常数.an+1 an
∴数列{bn}为等差数列且公差d=log2q.
(2)∵b1+b3+b5=6,∴b3=2.
∵a1>1,∴b1=log2a1>0.
∵b1b3b5=0,∴b5=0.
∴
解得b1+2d=2 b1+4d=0. b1=4 d=-1.
∴Sn=4n+
×(-1)=n(n-1) 2
.9n-n2 2
∵
∴log2q=-1 log2a1=4 q= 1 2 a1=16.
∴an=25-n(n∈N*).
(3)显然an=25-n>0,当n≥9时,Sn=
≤0.n(9-n) 2
∴n≥9时,an>Sn.
∵a1=16,a2=8,a3=4,a4=2,a5=1,a6=
,a7=1 2
,a8=1 4
,S1=4,S2=7,S3=9,S4=10,S5=10,S6=9,S7=7,S8=4,1 8
∴当n=3,4,5,6,7,8时,an<Sn;
当n=1,2或n≥9时,an>Sn.