问题 解答题
设f(x)=
x
a(x+2)
,方程f (x)=x有唯一解,数列{xn}满足f (x1)=1,xn+1=f (xn)(n∈N*).
(1)求数列{xn}的通项公式;
(2)已知数列{an}满足a1=
1
2
,an+1=
1
4
(2+an2-
2an
an+2
(n∈N*),求证:对一切n≥2的正整数都满足
3
4
1
x1+a1
+
1
2x2+a2
+…+
1
nxn+an
<2.
答案

(1)由f(x)=x得ax2+(2a-1)x=0(a≠0)

∴当且仅当a=

1
2
时,f(x)=x有唯一解x=0,

f(x)=

2x
x+2

当f(x1)=

2x1
2+x1
=1得x1=2,由xn+1=f (xn)=
2xn
xn+2
可得
1
xn+1
-
1
xn
=
1
2

∴数列{

1
xn
}是首项为
1
x1
=
1
2
,公差为
1
2
的等差数列

1
xn
=
1
2
+
1
2
(n-1)=
1
2
n

xn=

2
n

(2)∵a1=

1
2
,an+1=
1
4
(2+an2
2an
2+an
=
(2+an)an
2
 又a1=
1
2

1
an+1
=
2
an(2+an)
=
1
an
-
1
an+2
 且an>0,

1
an+2
=
1
an
-
1
an+1

1
nxn
=
1
an
-
1
an+1

当n≥2时,

1
x1+a1
+
1
2x2+a2
+…+
1
nxn+an
1
2+
1
2
+
1
2+
5
8
=
82
105
3
4

1
x1+a1
+
1
2x2+a2
+…+
1
nxn+an

=(

1
a1
-
1
a2
)+(
1
a2
-
1
a3
)+…+(
1
an
-
1
an+1

=

1
a1
-
1
an+1
=2-
1
an+1
<2

∴对一切n≥2的正整数都满足

3
4
1
x1+a1
+
1
2x2+a2
+…+
1
nxn+an
<2.

问答题
单项选择题