问题
解答题
设f(x)=
(1)求数列{xn}的通项公式; (2)已知数列{an}满足a1=
|
答案
(1)由f(x)=x得ax2+(2a-1)x=0(a≠0)
∴当且仅当a=
时,f(x)=x有唯一解x=0,1 2
∴f(x)=2x x+2
当f(x1)=
=1得x1=2,由xn+1=f (xn)=2x1 2+x1
可得2xn xn+2
-1 xn+1
=1 xn 1 2
∴数列{
}是首项为1 xn
=1 x1
,公差为1 2
的等差数列1 2
∴
=1 xn
+1 2
(n-1)=1 2
n1 2
∴xn=2 n
(2)∵a1=
,an+1=1 2
(2+an)2•1 4
=2an 2+an
又a1=(2+an)an 2 1 2
∴
=1 an+1
=2 an(2+an)
-1 an
且an>0,1 an+2
∴
=1 an+2
-1 an 1 an+1
即
=1 nxn
-1 an 1 an+1
当n≥2时,
+1 x1+a1
+…+1 2x2+a2
≥1 nxn+an
+1 2+ 1 2
=1 2+ 5 8
>82 105 3 4
+1 x1+a1
+…+1 2x2+a2 1 nxn+an
=(
-1 a1
)+(1 a2
-1 a2
)+…+(1 a3
-1 an
)1 an+1
=
-1 a1
=2-1 an+1
<21 an+1
∴对一切n≥2的正整数都满足
<3 4
+1 x1+a1
+…+1 2x2+a2
<2.1 nxn+an