问题
解答题
在数列{an}中,a1=1,an+1=1-
(1)求证:数列{bn}是等差数列,并求数列{an}的通项公式an; (2)设cn=n•2n+1•an,求数列{cn}的前n项和. |
答案
(1)证明:∵bn-1-bn=
-2 2an+1-1 2 2an-1
=
-2 2(1-
)-11 4an
=2 2an-1
-4an 2an-1
=2(n∈N*)2 2an-1
∴数列{bn}是等差数列
∵a1=1,∴b1=
=22 2a1-1
∴bn=2+(n-1)×2=2n
由bn=
得,2an-1=2 2an-1
=2 bn
(n∈N*)1 n
∴an=n+1 2n
(2)由(1)的结论得an=
,∴cn=n•2n+1•an=(n+1)•2nn+1 2n
∴Sn=2•21+3•22+4•23++(n+1)•2n①
2Sn=2•22+3•23+4•24++n•2n+(n+1)•2n+1,②
①-②,得-Sn=2•21+22+23+…+2n-(n+1)•2n+12
=2+2n+1-2-(n+1)•2n+1=-n•2n+1,
∴Sn=n•2n+1