问题
解答题
已知等差数列{an}满足a1=8,a5=0,数列{bn}的前n项和为Sn=2n-1-
①求数列{an}和{bn}的通项公式; ②解不等式an<bn. |
答案
①设数列{an}的公差为d,由a5=a1+4d,得d=-2,
∴an=-2n+10.
由数列{bn}的前n项和为Sn=2n-1-
(n∈N*)可知1 2
当n=1时,b1=S1=
,当n≥2时,bn=Sn-Sn-1=2n-2,该式对n=1也成立.1 2
所以数列{an}的通项公式为an=-2n+10,{bn}的通项公式为bn=2n-2.
②由an<bn得10-2n<2n-2
∵n=1,2,3时,an>bn
n=4时,an<bn
又{an}单调递减,{bn}单调递增.
∴不等式an<bn的解集为{n|n≥4,n∈N}.