问题
选择题
设(an+1)2=
|
答案
∵(an+1)2=
(an)2,an>0,1 10
∴
=an+1 an 1 4 10
∴lg
=-an+1 an 1 4
∴lgan+1-lgan=-1 4
∵bn=lgan,
∴bn+1-bn=-1 4
∴数列{bn}为公差为负数的等差数列,
故选B.
设(an+1)2=
|
∵(an+1)2=
(an)2,an>0,1 10
∴
=an+1 an 1 4 10
∴lg
=-an+1 an 1 4
∴lgan+1-lgan=-1 4
∵bn=lgan,
∴bn+1-bn=-1 4
∴数列{bn}为公差为负数的等差数列,
故选B.