问题
解答题
设数列{an}的各项均为正数,前n项和为Sn,已知4Sn=
(1)证明数列{an}是等差数列,并求其通项公式; (2)是否存在k∈N*,使得Sk2=
(3)证明:对任意m、k、p∈N*,m+p=2k,都有
|
答案
(1)∵4Sn=
+2an+1,a 2n
∴当n≥2时,4Sn-1=
+2an-1+1.a 2n-1
两式相减得4an=
-a 2n
+2an-2an-1,a 2n-1
∴(an+an-1)(an-an-1-2)=0
∵an>0,∴an-an-1=2,
又4S1=
+2a1+1,∴a1=1a 21
∴{an}是以a1=1为首项,d=2为公差的等差数列.
∴an=a1+(n-1)d=2n-1;
(2)由(1)知Sn=
=n2,(1+2n-1)n 2
假设正整数k满足条件,
则(k2)2=[2(k+2048)-1]2
∴k2=2(k+2048)-1,
解得k=65;
(3)证明:由Sn=n2得:Sm=m2,Sk=k2,Sp=p2
于是
+1 Sm
-1 Sp
=2 Sk
+1 m2
-1 p2
=2 k2 k2(p2+m2)-2m2p2 m2p2k2
∵m、k、p∈N*,m+p=2k,
∴k2(p2+m2)-2m2p2 m2p2k2
=
≥(
)2(p2+m2)-2m2p2m+p 2 m2p2k2
=0.mp×2pm-2m2p2 m2p2k2
∴
+1 Sm
≥1 Sp
.2 Sk