问题 解答题
设数列{an}的各项均为正数,前n项和为Sn,已知4Sn=
a2n
+2an+1(n∈N*)

(1)证明数列{an}是等差数列,并求其通项公式;
(2)是否存在k∈N*,使得Sk2=
a2k+2048
,若存在,求出k的值;若不存在请说明理由;
(3)证明:对任意m、k、p∈N*,m+p=2k,都有
1
Sm
+
1
Sp
2
Sk
答案

(1)∵4Sn=

a2n
+2an+1,

∴当n≥2时,4Sn-1=

a2n-1
+2an-1+1.

两式相减得4an=

a2n
-
a2n-1
+2an-2an-1

∴(an+an-1)(an-an-1-2)=0

∵an>0,∴an-an-1=2,

4S1=

a21
+2a1+1,∴a1=1

∴{an}是以a1=1为首项,d=2为公差的等差数列. 

∴an=a1+(n-1)d=2n-1;

(2)由(1)知Sn=

(1+2n-1)n
2
=n2

假设正整数k满足条件,

则(k22=[2(k+2048)-1]2

∴k2=2(k+2048)-1,

解得k=65;                         

(3)证明:由Sn=n2得:Sm=m2Sk=k2Sp=p2

于是

1
Sm
+
1
Sp
-
2
Sk
=
1
m2
+
1
p2
-
2
k2
=
k2(p2+m2)-2m2p2
m2p2k2

∵m、k、p∈N*,m+p=2k,

k2(p2+m2)-2m2p2
m2p2k2

=

(
m+p
2
)
2
(p2+m2)-2m2p2
m2p2k2
mp×2pm-2m2p2
m2p2k2
=0

1
Sm
+
1
Sp
2
Sk

判断题
单项选择题