问题
解答题
已知S(x)=a1x+a2x2+…+anxn,且a1,a2,…,an组成等差数列,n为正偶数,设S(1)=n2,S(-1)=n. (Ⅰ)求数列{an}的通项公式; (Ⅱ)证明S(
|
答案
(Ⅰ)设等差数列{an}的公差为d,
由题意知na1+
d=n2n(n-1) 2 a2-a1+a4-a3+…+an-an-1=n.
∴a1+
d=n.n-1 2
n=n.d 2
∴a1=d,d=2.an=2n-1.(6分)
证明:(Ⅱ)由S(
)=1×1 2
+3×(1 2
)2+…+(2n-1)×(1 2
)n,①1 2
则
S(1 2
)=1×(1 2
)2+…+(2n-3)×(1 2
)n+(2n-1)×(1 2
)n+1②1 2
①-②得,
S(1 2
)=1 2
+2[(1 2
)2+…+(1 2
)n]-(2n-1)•(1 2
)n+11 2
=
+1 2
-(2n-1)•(2×
[1-(1 4
)n-1]1 2 1- 1 2
)n+11 2
=
-(3 2
)n-1-(2n-1)•(1 2
)n+1<1 2
(n是正偶数),3 2
∴S(
)<3.(13分)1 2