问题
解答题
设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn是
(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式; (Ⅱ)证明
|
答案
(Ⅰ)∵Sn是
和an的等差中项,a 2n
∴2Sn=an2+an,且an>0,
当n=1时,2a1=a12+a1,解得a1=1,
当n≥2时,有2Sn-1=an-12+an-1,
∴2Sn-2Sn-1=an2-an-12+an-an-1,
即2an=an2-an-12+an-an-1,
∴an2-an-12=an+an-1,
即(an+an-1)(an-an-1)=an+an-1,
∵an+an-1>0,
∴an-an-1=1,n≥2,
∴数列{an}是首项为1,公差为1的等差数列,且an=n.
(Ⅱ)∵an=n,
则Sn=
,n(n+1) 2
∴
=1 Sn
=2(2 n(n+1)
-1 n
),1 n+1
∴
+1 S1
+1 S2
+…+1 S3 1 Sn
=2[(1-
)+(1 2
-1 2
)+…+(1 3
-1 n
)]1 n+1
=2(1-
)<2.1 n+1
∴
+1 S1
+…+1 S2
<2.1 Sn