问题 解答题
设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn
a2n
和an的等差中项.
(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明
1
S1
+
1
S2
+…+
1
Sn
<2
答案

(Ⅰ)∵Sn

a2n
和an的等差中项,

∴2Sn=an2+an,且an>0,

当n=1时,2a1=a12+a1,解得a1=1,

当n≥2时,有2Sn-1=an-12+an-1

∴2Sn-2Sn-1=an2-an-12+an-an-1

2an=an2-an-12+an-an-1

an2-an-12=an+an-1

即(an+an-1)(an-an-1)=an+an-1

∵an+an-1>0,

∴an-an-1=1,n≥2,

∴数列{an}是首项为1,公差为1的等差数列,且an=n.

(Ⅱ)∵an=n,

Sn=

n(n+1)
2

1
Sn
=
2
n(n+1)
=2(
1
n
-
1
n+1
),

1
S1
+
1
S2
+
1
S3
+…+
1
Sn

=2[(1-

1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]

=2(1-

1
n+1
)<2.

1
S1
+
1
S2
+…+
1
Sn
<2.

单项选择题
单项选择题