问题 解答题
已知f (x)=2sin(x+
θ
2
)cos(x+
θ
2
)+2
3
cos2(x+
θ
2
)-
3

(1)化简f (x)的解析式;
(2)若0≤θ≤π,求θ使函数f (x)为偶函数;
(3)在(2)成立的条件下,求满足f (x)=1,x∈[-π,π]的x的集合.
答案

(1)f(x)=sin(2x+θ)+2

3
×
1+cos(2x+θ)
2
-
3

=sin(2x+θ)+

3
cos(2x+θ)

=2sin(2x+θ+

π
3
);

(2)要使f (x)为偶函数,则必有f(-x)=f(x),

∴2sin(-2x+θ+

π
3
)=2sin(2x+θ+
π
3
),即-sin[2x-(θ+
π
3
)]=sin(2x+θ+
π
3
),

整理得:-sin2xcos(θ+

π
3
)+cos2xsin(θ+
π
3
)=sin2xcos(θ+
π
3
)+cos2xsin(θ+
π
3

即2sin2xcos(θ+

π
3
)=0对x∈R恒成立,

∴cos(θ+

π
3
)=0,又0≤θ≤π,

则θ=

π
6

(3)当θ=

π
6
时,f(x)=2sin(2x+
π
2
)=2cos2x=1,

∴cos2x=

1
2

∵x∈[-π,π],

∴x=±

π
6

则x的集合为{x|x=±

π
6
}.

单项选择题
问答题 论述题