问题
解答题
已知f (x)=2sin(x+
(1)化简f (x)的解析式; (2)若0≤θ≤π,求θ使函数f (x)为偶函数; (3)在(2)成立的条件下,求满足f (x)=1,x∈[-π,π]的x的集合. |
答案
(1)f(x)=sin(2x+θ)+2
×3
-1+cos(2x+θ) 2 3
=sin(2x+θ)+
cos(2x+θ)3
=2sin(2x+θ+
);π 3
(2)要使f (x)为偶函数,则必有f(-x)=f(x),
∴2sin(-2x+θ+
)=2sin(2x+θ+π 3
),即-sin[2x-(θ+π 3
)]=sin(2x+θ+π 3
),π 3
整理得:-sin2xcos(θ+
)+cos2xsin(θ+π 3
)=sin2xcos(θ+π 3
)+cos2xsin(θ+π 3
)π 3
即2sin2xcos(θ+
)=0对x∈R恒成立,π 3
∴cos(θ+
)=0,又0≤θ≤π,π 3
则θ=
;π 6
(3)当θ=
时,f(x)=2sin(2x+π 6
)=2cos2x=1,π 2
∴cos2x=
,1 2
∵x∈[-π,π],
∴x=±
,π 6
则x的集合为{x|x=±
}.π 6