问题 解答题
在数列{an}中,a2+1是a1与a3的等差中项,设
x
=(1,2),
y
=(anan+1)
,且满足
x
y

(1)求数列{an}的通项公式;
(2)记数列{an}的前n项的和为Sn,若数列{bn}满足bn=anlog2(sn+2),试求数列{bn}的前n项的和Tn
答案

(1)因为

x
=(1,2),
y
=(anan+1),
x
y

所以an+1=2an,数列{an}是等比数列,公比为2,

又a2+1是a1与a3的等差中项,

2(a2+1)=a1+a3,即2(2a1+1)=5a1

解得a1=2,

数列{an}的通项公式an=2•2n-1=2n

(2)数列{an}的前n项的和为Sn=

2×(1-2n)
1-2
=2n+1-2,

数列{bn}满足bn=anlog2(sn+2)=2nlog2(2n+1-2+2)=2n•(n+1),

Tn=2×21+3×22+4×23+…+(n+1)•2n…①,

①×2得2Tn=2×22+3×23+4×24+…+(n+1)•2n+1…②,

①-②得,-Tn=2×21+22+23+…+2n-(n+1)•2n+1

=2-(n+1)•2n+1+

2×(1-2n)
1-2

=2-(n+1)•2n+1+2n+1-2

=-n•2n+1

数列{bn}的前n项的和Tn=n•2n+1

单项选择题
单项选择题