问题 解答题
设数列{an}的各项都是正数,且对任意n∈N*,都有(an-1)(an+3)=4Sn,其中Sn为数列{an}的前n项和.
(Ⅰ)求证数列{an}是等差数列;
(Ⅱ)若数列{
4
a2n
-1
}
的前n项和为Tn,试证明不等式
1
2
Tn
<1成立.
答案

(Ⅰ)∵(an-1)(an+3)=4Sn,当n≥2时,(an-1-1)(an-1+3)=4Sn-1

两式相减,得

a2n
-
a2n-1
+2an-2an-1=4an,即(an+an-1)(an-an-1-2)=0,又an>0,∴an-an-1=2.

当n=1时,(a1-1)(a1+3)=4a1,∴(a1+1)(a1-3)=0,又a1>0,∴a1=3.

所以,数是以3为首项,2为公差的等差数列.

(Ⅱ)由(Ⅰ),a1=3,d=2,∴an=2n+1.

bn=

4
an2-1
,n∈N*;∵an=2n+1,∴an2-1=4n(n+1)))

bn=

4
4n(n+1)
=
1
n(n+1)
=
1
n
-
1
n+1

∴Tn=b1+b2+b3+…+bn=(1-

1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)=1-
1
n+1
<1

又∵Tn+1-Tn=

n+1
n+2
-
n
n+1
=
1
(n+2)(n+1)
>0,∴Tn+1TnTn-1>…>T1=
1
2

综上所述:不等式

1
2
Tn<1成立.

解答题
单项选择题 A1/A2型题