问题
解答题
设数列{an}的各项都是正数,且对任意n∈N*,都有(an-1)(an+3)=4Sn,其中Sn为数列{an}的前n项和. (Ⅰ)求证数列{an}是等差数列; (Ⅱ)若数列{
|
答案
(Ⅰ)∵(an-1)(an+3)=4Sn,当n≥2时,(an-1-1)(an-1+3)=4Sn-1,
两式相减,得
-a 2n
+2an-2an-1=4an,即(an+an-1)(an-an-1-2)=0,又an>0,∴an-an-1=2.a 2n-1
当n=1时,(a1-1)(a1+3)=4a1,∴(a1+1)(a1-3)=0,又a1>0,∴a1=3.
所以,数是以3为首项,2为公差的等差数列.
(Ⅱ)由(Ⅰ),a1=3,d=2,∴an=2n+1.
设bn=
,n∈N*;∵an=2n+1,∴an2-1=4n(n+1)))4 an2-1
∴bn=
=4 4n(n+1)
=1 n(n+1)
-1 n 1 n+1
∴Tn=b1+b2+b3+…+bn=(1-
)+(1 2
-1 2
)+…+(1 3
-1 n
)=1-1 n+1
<1.1 n+1
又∵Tn+1-Tn=
-n+1 n+2
=n n+1
>0,∴Tn+1>Tn>Tn-1>…>T1=1 (n+2)(n+1)
,1 2
综上所述:不等式
≤Tn<1成立.1 2