问题
填空题
设函数f(x)=
|
答案
∵a,b,c成等差数列,∴2b=a+c,
∴f(a)+f(c)=
+1+1 a-b
+11 c-b
=2+
+1 a-b
=2+1 c-b c-b+a-b (a-b)(c-b)
=2+
=2+0=2c+a-2b (a-b)(c-b)
故答案为:2
设函数f(x)=
|
∵a,b,c成等差数列,∴2b=a+c,
∴f(a)+f(c)=
+1+1 a-b
+11 c-b
=2+
+1 a-b
=2+1 c-b c-b+a-b (a-b)(c-b)
=2+
=2+0=2c+a-2b (a-b)(c-b)
故答案为:2