问题 填空题
椭圆
x2
4
+
y2
3
=1
内有一点P(1,-1),F为椭圆的右焦点,在椭圆上有一动点M,则|MP|+|MF|的取值范围为______.
答案

设F'为椭圆的左焦点,连结MF',作过P、F'的直线交椭圆于

M1、M2两点,如图所示

x2
4
+
y2
3
=1中,a=2,b=
3

∴c=

a2-b2
=1,可得F(1,0),F'(-1,0).

由椭圆的定义,得|MF|+|MF'|=2a=4,

∴|MP|+|MF|=|MP|+(4-|MF'|)=4+(|MP|-|MF'|)

由平面几何知识,得-|PF'|≤|MP|-|MF'|≤|PF'|,

∴当M与M1重合时,|MP|-|MF'|达到最大值|PF'|;当M与M2重合时,|MP|-|MF'|达到最小值-|PF'|.

由|PF'|=

(1+1)2+(-1-0)2
=
5
,可得|MP|-|MF'|的最大值为
5
,最小值为-
5

∴|MP|+|MF|=4+(|MP|-|MF'|)的取值范围为[4-

5
,4+
5
].

故答案为:[4-

5
,4+
5
].

选择题
不定项选择