问题 解答题
设Tn为数列{an}的前n项乘积,满足Tn=1-an(n∈N*)
(1)设bn=
1
Tn
,求证:数列{bn}是等差数列;
(2)设cn=2n•bn,求证数列{cn}的前n项和Sn
(3)设An=
Te1
+
Te2
+…
Ten
,求证:an+1-
1
2
An≤-
1
4
答案

(1)∵Tn=1-anan=

Tn
Tn-1
,n≥2,

Tn=1-

Tn
Tn-1
,从而
1
Tn
-
1
Tn-1
=1,(n≥2)

∴bn-bn-1=1,(n≥2)

∵T1=a1=1-a1

a1=

1
2
b1=
1
T1
=
1
a1
=2

∴{bn}是以2为首项,1为公差的等差数列.

(2)由(1)知bn=2+(n-1)=n+1,从而cn=(n+1)•2n

∴Sn=2•2+3•22+…+(n+1)•2n

2Sn=2•22+3•23+…+n•2n+(n+1)•2n+1

两式相减,得-Sn=4+(22+23+…+2n)-(n+1)•2n+1

=4+

4(1-2n-1)
1-2
-(n+1)•2n+1

=-n•2n+1

∴Sn=n•2n+1

(3)∵Tn=

1
bn
=
1
n+1

∴n≥2时,an=

Tn
Tn-1
=
n
n+1

a1=

1
2
,∴an=
n
n+1
,n∈N* 

An=T12+T22+…+Tn2

=

1
22
+
1
32
+…+
1
(n+1)2

1
2×3
+
1
3×4
+…+
1
(n+1)(n+2)

=

1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2

=

1
2
-
1
n+2

=an+1-

1
2

Anan+1-

1
2

又∵当n≥2时,An=T12+T22+…+Tn2

=

1
22
+
1
32
+…+
1
(n+1)2

=

1
22
+
1
32
+…+
1
(n+1)2
1
22
+
1
2×3
+
1
3×4
+…+
1
n(n+1)

=

1
22
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1

=

1
4
+
1
2
-
1
n+1
=an-
1
4

an+1-

1
2
An≤-
1
4

问答题 简答题
判断题