问题
解答题
设Tn为数列{an}的前n项乘积,满足Tn=1-an(n∈N*) (1)设bn=
(2)设cn=2n•bn,求证数列{cn}的前n项和Sn; (3)设An=
|
答案
(1)∵Tn=1-an,an=
,n≥2,Tn Tn-1
∴Tn=1-
,从而Tn Tn-1
-1 Tn
=1,(n≥2)1 Tn-1
∴bn-bn-1=1,(n≥2)
∵T1=a1=1-a1,
∴a1=
,b1=1 2
=1 T1
=2,1 a1
∴{bn}是以2为首项,1为公差的等差数列.
(2)由(1)知bn=2+(n-1)=n+1,从而cn=(n+1)•2n,
∴Sn=2•2+3•22+…+(n+1)•2n,
2Sn=2•22+3•23+…+n•2n+(n+1)•2n+1,
两式相减,得-Sn=4+(22+23+…+2n)-(n+1)•2n+1
=4+
-(n+1)•2n+14(1-2n-1) 1-2
=-n•2n+1,
∴Sn=n•2n+1.
(3)∵Tn=
=1 bn
,1 n+1
∴n≥2时,an=
=Tn Tn-1
,n n+1
∵a1=
,∴an=1 2
,n∈N* ,n n+1
An=T12+T22+…+Tn2
=
+1 22
+…+1 32 1 (n+1)2
>
+1 2×3
+…+1 3×4 1 (n+1)(n+2)
=
-1 2
+1 3
-1 3
+…+1 4
-1 n+1 1 n+2
=
-1 2 1 n+2
=an+1-
,1 2
∴An>an+1-
,1 2
又∵当n≥2时,An=T12+T22+…+Tn2
=
+1 22
+…+1 32 1 (n+1)2
=
+1 22
+…+1 32
<1 (n+1)2
+1 22
+1 2×3
+…+1 3×4 1 n(n+1)
=
+1 22
-1 2
+1 3
-1 3
+…+1 4
-1 n 1 n+1
=
+1 4
-1 2
=an-1 n+1
,1 4
an+1-
<An≤-1 2
.1 4