问题
解答题
已知椭圆C:
(Ⅰ)求椭圆C的方程; (Ⅱ)若过点(2,0)的直线与椭圆C相交于两点A、B,P为椭圆上一点,且满足
|
答案
(Ⅰ)由已知过点D(1,
),得2 2
+1 a2
=1,①1 2b2
记c=
,不妨设F1(-c,0),F2(c,0),则a2-b2
1=(-c-1,-DF
),2 2
=(c-1,-DF2
),2 2
由
1•DF
=DF2
=(-c-1)(c-1)+(-1 2
)2,得c2=1,即a2-b2=1.②2 2
由①、②,得a2=2,b2=1.
故椭的方程为
+y2=1.x2 2
(Ⅱ)由题意知,直线AB的斜率存在.
设AB方程为y=k(x-2),A(x1,y1),B(x2,y2),P(x,y).
由
,得(1+2k2)x2-8k2x+8k2-2=0.y=k(x-2)
+y2=1x2 2
△=64k2-4(2k2+1)(8k2-2)>0,k2<
.1 2
x1+x2=
,x1x2=8k2 1+2k2
,8k2-2 1+2k2
∵
+OA
=tOB
,∴(x1+x2,y1+y2)=t(x,y).OP
x=
=x1+x2 t
,y=8k2 t(1+2k2)
=y1+y2 t
[k(x1+x2)-4k]=1 t -4k t(1+2k2)
∵点P在椭圆上,∴
+2(8k2)2 t2(1+2k2)2
=2.(-4k)2 t2(1+2k2)2
∴16k2=t2(1+2k2),t2=
=16k2 1+2k2
<16
+21 k2
=4,16 2+2
∴-2<t<2.
∴t的最大整数值为1.