问题 解答题
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点D(1,
2
2
),焦点为F1,F2,满足
DF1
.
DF2
=
1
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点(2,0)的直线与椭圆C相交于两点A、B,P为椭圆上一点,且满足
OA
+
OB
=t
OP
(其中O为坐标原点),求整数t的最大值.
答案

(Ⅰ)由已知过点D(1,

2
2
),得
1
a2
+
1
2b2
=1
,①

记c=

a2-b2
,不妨设F1(-c,0),F2(c,0),则
DF
1
=(-c-1,-
2
2
),
DF2
=(c-1,-
2
2
),

DF
1
DF2
=
1
2
=(-c-1)(c-1)+(-
2
2
)2,得c2=1,即a2-b2=1.②

由①、②,得a2=2,b2=1.

故椭的方程为

x2
2
+y2=1.

(Ⅱ)由题意知,直线AB的斜率存在.

设AB方程为y=k(x-2),A(x1,y1),B(x2,y2),P(x,y).

y=k(x-2)
x2
2
+y2=1
,得(1+2k2)x2-8k2x+8k2-2=0.

△=64k2-4(2k2+1)(8k2-2)>0,k2

1
2

x1+x2=

8k2
1+2k2
x1x2=
8k2-2
1+2k2

OA
+
OB
=t
OP
,∴(x1+x2,y1+y2)=t(x,y).

x=

x1+x2
t
=
8k2
t(1+2k2)
y=
y1+y2
t
=
1
t
[k(x1+x2)-4k]=
-4k
t(1+2k2)

∵点P在椭圆上,∴

(8k2)2
t2(1+2k2)2
+2
(-4k)2
t2(1+2k2)2
=2.

∴16k2=t2(1+2k2),t2=

16k2
1+2k2
=
16
1
k2
+2
16
2+2
=4,

∴-2<t<2.

∴t的最大整数值为1.

单项选择题
单项选择题