问题 填空题
已知f(x)是定义在[-4,4]上的奇函数,g(x)=f(x-2)+1.当x∈[-2,0)∪(0,2]时,g(x)=
4
x2
,且g(0)=0,则方程g(x)=log
1
2
(x+1)
的解的个数为______.
答案

f(x)是定义在[-4,4],g(x)定义在[-2,6],

4
x2
=f(x-2)+1,f(x-2)=
4
x2
- 1

此时x-2∈[-4,-2)u(-2,0],f(2-x)=1-

4
x2
,2-x∈[0,2)u(2,4]

设t=2-x,f(t)=1-

4
(t-2)2
,当x∈[2,4)u(4,6]时,g(x)=f(x-2)+1

此时的x-2即可整体代换前面的t

2-

4
(x-4)2
,然后因为g(0)=0=f(-2)+1,g(4)=f(2)+1=2,利用g(x)定义在[-2,6]上的解析式,及log
1
2
(x+1)
,即可得出答案为4,故答案为4.

单项选择题
多项选择题