问题
解答题
设f(x)是R上的奇函数,且f(x+3)=-f(x),求f(1998)的值.
答案
因为f(x+3)=-f(x),
所以f(x+6)=f((x+3)+3)=-f(x+3)=f(x),
故6是函数f(x)的一个周期.
又f(x)是奇函数,且在x=0处有定义,
所以f(x)=0
从而f(1998)=f(6×333)=f(0)=0.
设f(x)是R上的奇函数,且f(x+3)=-f(x),求f(1998)的值.
因为f(x+3)=-f(x),
所以f(x+6)=f((x+3)+3)=-f(x+3)=f(x),
故6是函数f(x)的一个周期.
又f(x)是奇函数,且在x=0处有定义,
所以f(x)=0
从而f(1998)=f(6×333)=f(0)=0.