问题
解答题
设函数f(x)=
(1)求函数f(x)的定义域、值域; (2)判断函数f(x)的奇偶性; (3)指出函数f(x)的单调区间并就其中一种情况加以证明. |
答案
(1)∵f(x)=
,1 x2-1
∴x2-1≠0,即x≠±1,即函数的定义域为{x|x≠±1}.
则f(x)≠0,即f(x)值域为{x|x≠0};
(2)∵函数的定义域为{x|x≠±1}.
∴定义域关于原点对称,
∵f(-x)=
=f(x),1 x2-1
∴函数f(x)的是偶数;
(3)设t=x2-1,则y=
,1 t
∵当x>1时,函数t=x2-1单调递增,此时y=
单调递减,∴此时函数f(x)单调递减,1 t
当0<x<1时,函数t=x2-1单调递增,此时y=
单调递减,∴此时函数f(x)单调递减,1 t
当x<-1时,函数t=x2-1单调递减,此时y=
单调递减,∴此时函数f(x)单调递增,1 t
当-1<x≤0时,函数t=x2-1单调递减,此时y=
单调递减,∴此时函数f(x)单调递增,1 t
综上函数的单调递增区间为(-∞,-1)和(-1,0],
递减区间为(1,+∞)和(0,1).