问题
解答题
已知关于x的一元二次方程x2-(8+k)x+8k=0
(1)求证:无论k取任何实数,方程总有实数根;
(2)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.
答案
(1)∵△=(8+k)2-4×8k
=(k-8)2,
∵(k-8)2,≥0,
∴△≥0,
∴无论k取任何实数,方程总有实数根;
(2)解方程x2-(8+k)x+8k=0得x1=k,x2=8,
①当腰长为5时,则k=5,
∴周长=5+5+8=18;
②当底边为5时,
∴x1=x2,
∴k=8,
∴周长=8+8+5=21.