问题
选择题
已知椭圆C:
|
答案
如图所示,
在△AFB中,由余弦定理可得:
|AF|2=|AB|2+|BF|2-2|AB||BF|cos∠ABF,
∵|AB|=26,|BF|=10,cos∠ABF=
,5 13
∴|AF|2=262+102-2×26×10×
=576,5 13
解得|AF|=24.
设F′为椭圆的右焦点,连接BF′,AF′.根据对称性可得四边形AFBF′是矩形.
∴|BF′|=|AF|=24,|FF′|=26.
∴2a=10+24=34,2c=26,解得a=17,c=13.
∴e=
.13 17
故选B.