问题
解答题
已知函数f(x)=x+4
(1)求证:数列{
(2)若cn=
|
答案
(1)∵函数f(x)=x+4
+4=(x
+2)2(x≥0),x
∴an+1=f(an)=(
+2)2,即 an
-an+1
=2 (n∈N*).an
∴数列{
}是以 an
=1为首项,公差为2的等差数列.…(4分)a1
(2)由(Ⅰ)得:
=1+(n-1)2=2n-1,即 an=(2n-1)2(n∈N*).…(5分)an
b1=1,当n≥2时,bn-bn-1=(
)n-1,∴bn=b1+( b2-b1)+( b3-b2)+(b4-b3)+…+(bn-bn-1) 1 3
=1+
+(1 3
)2+…+(1 3
)n-1=1 3
(1-3 2
),因而 bn=1 3n
(1-3 2
),n∈N*.…(7分)1 3n
∴cn=
•bn=(2n-1)•an
(1-3 2
),∴Sn=c1+c2+c3+…+cn=1 3n
[1+3+5+…+(2n-1)-(3 2
+1 3
+3 32
+…+5 33
)].2n-1 3n
令Tn=
+1 3
+3 32
+…+5 33
①,则 2n-1 3n
Tn=1 3
+1 32
+3 33
+…+5 34
+2n-3 3n
②…(9分)2n-1 3n+1
①-②,得
Tn=2 3
+2(1 3
+1 32
+1 33
+…+1 34
)-1 3n
=2n-1 3n+1
+1 3
(1-1 3
)-1 3n-1
,…(10分)2n-1 3n+1
∴Tn=1-
.n+1 3n
又 1+3+5+…+(2n-1)=n2.…(11分)
∴Sn=
(n2-1+3 2
).…(12分)n+1 3n