问题
选择题
a,b∈R,则f(x)=x|sinx+a|+b是奇函数的充要条件是( )
|
答案
因为函数的定义域为R,所以f(0)=0.
所以b=0.
所以f(x)=x|sinx+a|.
因为函数f(x)是奇函数,
所以f(-x)=-f(x)即-x|-sinx+a|=-x|sinx+a|,
所以|-sinx+a|=|sinx+a|,所以a=0.
故选A.
a,b∈R,则f(x)=x|sinx+a|+b是奇函数的充要条件是( )
|
因为函数的定义域为R,所以f(0)=0.
所以b=0.
所以f(x)=x|sinx+a|.
因为函数f(x)是奇函数,
所以f(-x)=-f(x)即-x|-sinx+a|=-x|sinx+a|,
所以|-sinx+a|=|sinx+a|,所以a=0.
故选A.