问题 填空题

已知函数f(x)是奇函数,当x<0时,f(x)=x2+a•cosπx,若f(1)=2,则实数a=______.

答案

因为函数f(x)是奇函数,

∴f(1)=-f(-1)=2;

∴f(-1)=-2.

∴(-1)2+a•cosπ(-1)=-2⇒1-a=-2⇒a=-3.

故答案为:-3.

选择题
填空题