问题 解答题

数列{an}的前n项和为Sn,a1=1,an+1=2Sn(n∈N*).

(1)求数列{an}的通项an;

(2)求数列{nan}的前n项和Tn.

答案

(1)∵an+1=2Sn,∴Sn+1-Sn=2Sn,∴=3.

又∵S1=a1=1,

∴数列{Sn}是首项为1、公比为3的等比数列,

Sn=3n-1(n∈N*).

当n≥2时,an=2Sn-1=2·3n-2(n≥2),

∴an=

(2)Tn=a1+2a2+3a3+…+nan.

当n=1时,T1=1;

当n≥2时,Tn=1+4·30+6·31+…+2n·3n-2,                            ①

3Tn=3+4·31+6·32+…+2n·3n-1,                                   ②

①-②得:

-2Tn=-2+4+2(31+32+…+3n-2)-2n·3n-1

=2+2·-2n·3n-1

=-1+(1-2n)·3n-1.

∴Tn=+·3n-1(n≥2).

又∵T1=a1=1也满足上式,

∴Tn=+3n-1(n-) (n∈N*).

选择题
判断题