已知函数f(x)=a-
(1)求b的值; (2)当a=1时,是否存在m,n(n>m>0)使得函数y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],若存在,求出m,n的值,否则,说明理由; (3)若在函数定义域内总存在区间[m,n](m<n),使得y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],求实数a的取值范围. |
(1)由已知可得,f(x)=a-
,1 |2x-b|
且函数的定义域为D=(-∞,
)∪(b 2
,+∞).b 2
又y=f(x)是偶函数,故定义域D关于原点对称.
于是,b=0.
又对任意x∈D,有f(x)=f(-x),可得b=0.
因此所求实数b=0.…(3分)
(2)由(1)可知,f(x)=a-
(D=(-∞,0)∪(0,+∞)).1 2|x|
由f(x)=a-
的图象,1 2|x|
知:f(x)在区间(0,+∞)上是增函数,f(x)在区间(-∞,0)上是减函数
又n>m>0,
∴y=f(x)在区间[m,n]上是增函数.
∴有
,1-
=m1 2m 1-
=n1 2n
即方程1-
=x,2x2-2x+1=0,1 2x
∵△=4-8<0,
∴不存在正实数m,n,满足题意.…(7分)
(3)由(1)可知,
f(x)=a-
(D=(-∞,0)∪(0,+∞)).f(x)=a-1 2|x|
的图象,1 2|x|
知f(x)在区间(0,+∞)上是增函数,f(x)在区间(-∞,0)上是减函数
因y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],故必有m、n同号.
①当0<m<n时,f(x)在区间[m,n]上是增函数,
有
,a-
=m1 2m a-
=n1 2n
即方程x=a-
,2x2-2ax+1=0有两个不相等的正实数根,1 2x
因此
,2a>0 △=4a2-8>0
解得a>
.…(10分)2
②当m<n<0时,f(x)在区间[m,n]上是减函数,
有
,a+
=n1 2m a+
=m1 2n
化简得(m-n)a=0,a=0
综上,实数a的取值范围a=0,或a>
.…(12分)2