问题
解答题
已知关于x的方程x2+(4k+1)x+2k-1=0.
(1)求证:此方程一定有两个不相等的实数根;
(2)若x1,x2是方程的两个实数根,且(x1-2)(x2-2)=2k-3,求k的值.
答案
(1)证明:△=b2-4ac
=(4k+1)2-4(2k-1)
=16k2+8k+1-8k+4=16k2+5,
∵k2≥0,∴16k2≥0,∴16k2+5>0,
∴此方程有两个不相等的实数根.
(2)根据题意,得x1+x2=-(4k+1),x1x2=2k-1,
∴(x1-2)(x2-2)=x1x2-2(x1+x2)+4
=(2k-1)+2(4k+1)+4=2k-1+8k+2+4=10k+5
即10k+5=2k-3,
∴k=-1.