问题 解答题

(14分)已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上。  (1)求a1和a2的值;  (2)求数列{an},{bn}的通项an和bn;  (3)设cn=an·bn,求数列{cn}的前n项和Tn

答案

(1)a1=2,a2=4(2)an=2bn=2n-1(3)Tn=(2n-3)2n+1+6   

(1)∵anSn与2的等差中项∴Sn=2an-2              。。。。1

a1=S1=2a1-2,解得a1="2              " 。。。。2

a1+a2=S2=2a2-2,解得a2="4     " 。。。        。3

(2)∵Sn=2an-2,Sn-1=2an-1-2,

SnSn-1=an                。。。。5

an=2an-2an-1,    ∵an≠0,∴,。。6

即数列{an}是等比数列∵a1=2,∴an=2n                                 。。。。7

∵点P(bnbn+1)在直线x-y+2=0上,∴bn-bn+1+2=0,  。。 。8

bn+1-bn=2,即数列{bn}是等差数列,又b1=1,∴bn=2n-1,     9分              (3)∵cn=(2n-1)2n

Tn=a1b1+ a2b2+····anbn=1×2+3×22+5×23+····+(2n-1)2n

∴2Tn=1×22+3×23+····+(2n-3)2n+(2n-1)2n+1

因此:-Tn=1×2+(2×22+2×23+···+2×2n)-(2n-1)2n+1

即:-Tn=1×2+(23+24+····+2n+1)-(2n-1)2n+1

Tn=(2n-3)2n+1+6                                      ··14分

选择题
单项选择题