问题 解答题

设数列{an}满足a1 = 3,an+1 = 2an2n+1+3nn≥1。

(1)求数列{an}的通项公式;

(2)求数列{an}的前n项之和Sn

答案

(1)an=2n-1·(n2-n)+3n

(2)Sn= - (n-2)·2n+1+(n-1)·n·2n-4= - (n-2)·2n+1+(n-1)·n·2n-4

(1) an= 2an-1+(n-1)·2n+3n-1

=2[2an-2+(n-2)·2n-1+3n-2]+(n-1)·2n+3n-1

=22an-2+[(n-2)+(n-1)]·2n+(2·3n-2+3n-1)

=22[2an-3+(n-3)·2n-2+3n-3]+[(n-2)+(n-1)]·2n+(2·3n-2+3n-1)

=23an-3+[(n-3)+(n-2)+(n-1)]·2n+(22·3n-3+2·3n-2+3n-1)

=……

=2 n-1a1+[1+2+3+…+(n-1)]·2n+(2n-2·3+2n-3·32+…+3n-1)

=2n-1·3+·2n+2n-2·3·

=2n-1·(n2-n+3)+2n-1·3[()n-1-1]

=2n-1·(n2-n)+3n

(2)设数列{bn},其中bn =2n-1·(n2-n),Mn 为其前n项和,则Sn= Mn+3n

Mn =0+1·2·21+2·3·22+3·4·23+…+(n-1)·n·2n-1

2Mn = 1·2·22+2·3·23+…+(n-1)·n·2n

相减得 - Mn = 1·2·2+2·2·22+3·2·23+…+2·(n-1)·2n-1- (n-1)n·2n

=1·22+2·23+3·24+…+(n-1)·2n- (n-1)n·2n

-2 Mn = 1·23+2·24+3·25+…+(n-1)·2n+1- (n-1)·n·2n+1

相减得 Mn = 1·22+23+24+…+2n- (n-1)·2 n+1+(n-1)n·2n

= (2-n)·2 n+1+(n-1)·n·2n-4,

Sn = Mn+3+32+…+3n

= - (n-2)·2n+1+(n-1)·n·2n-4。

单项选择题
单项选择题